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loT 1.0: Internet of Things
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loT 2.0: Intelligence on Things

Google Assistant

i
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loT 2.0: Intelligence on Things

Reliability
Latency
Privacy
Energy
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Emerging TinyML
Use Cases

Example: Smart shoes

Kicking
Penalty kicking
Passing
Dribbling
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Emerging TinyML
Use Cases

Example: Augmented Reality
e Eye tracking
e Hand tracking
e Computer vision
e Superresolution
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Tiny Robot Learning

1 Light reading and

aser Readings

< e 95 4

Duisterhof, B.P., Krishnan, S., Cruz, J.J., Banbury, C.R., Fu, W., Faust, A., de Croon, G.C.
and Reddi, V.J., 2021, May. Tiny robot learning (tinyrl) for source seeking on a nano

quadcopter. In 2021 IEEE International Conference on Robotics and Automation (ICRA) (pp.

7242-7248). IEEE.

Duisterhof, B.P., Li, S., Burgués, J., Reddi, V.J. and de Croon, G.C., 2021, September. Sniffy
bug: A fully autonomous swarm of gas-seeking nano quadcopters in cluttered
environments. In 2021 [EEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (pp. 9099-9106). IEEE.
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Digitizer - Al on the edge

An ESP32 all inclusive neural network recognition system for meter digitalization

Overview Configuration = Recognition File Server  System
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Rich Array of Sensors

Motion Sensors Acoustic Sensors
Gyroscope, radar, Ultrasonic, Microphones,
magnetometer, accelerator Geophones, Vibrometers
Touchscreen Sensors Image Sensors
Capacitive, IR Thermal, Image
Force Sensors Rotation Sensors

Pressure, Strain Encoders

Environmental Sensors
Temperature, Humidity,
Pressure, IR, etc.

Biometric Sensors
Fingerprint, Heart rate, etc.



No Good Data Left Behind

5 Quintillion <1%

bytes of data produced of unstructured data is
every day by loT analyzed or used at all

Source: Harvard Business Review, What's Your Data Strategy?, April 18, 2017
Cisco, Internet of Things (loT) Data Continues to Explode Exponentially. Who Is
Using That Data and How?, Feb 5, 2018 21
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|D musT READ: Logéj flaw: Now state-backed hackers are using bug as part of attacks,

Machine learning at the edge: Tin
getting big

Being able to deploy machine learning applications at the edge is the key to unlocking
TinyML is the art and science of producing machine learning models frugal enough to
rapid growth.

4 <F  Written by George Anadiotis, Contributing Writer

g Posted In Big on Data on June 7, 2021 | Topic: Big Data

Is it $61 billion and 38.4% CAGR by 2028 or $43 billion and 37.4% CAGR by 2027? Depends on
which report outlining the growth of edge computing you choose to go by, but in the end it's not
that different.

What matters is that edge computing is booming. There is growing interest by vendors, and ample

coverage, for good reason. Although the definition of what constitutes edge computing is a bit

fuzzy, the idea is simple. It's about taking compute out of the data center, and bringing it as close

to where the action is as possible.

Whether it's stand-alone loT sensors, devices of all kinds, drones, EXECuTIVE SUE

3
=
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or autonomous vehicles, there's one thing in common. Increasingly,
data generated at the edge are used to feed applications powered
by machine learning models. There's just one problem: machine

learning models were never designed to be deployed at the edge.

Not until now, at least. Enter TinyML.
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How TinyML is powering big ideas across
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From cars and TVs to lightbulbs and doorbells. So many of the objects in everyday life

have ‘smart’functionality because the manufacturers have built chips into them.

But what if you could also run machine learning models in something as small as a
golf ball dimple? That's the reality that’s being enabled by TinyML, a broad movement
to run tiny machine learning algorithms on embedded devices, or those with
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Questions

How do we design an
open-source ecosystem to
enable TinyML to thrive in
the face of heterogeneity?

How do we drive hardware
and software co-designin a
flexible manner across the
complete system stack?

How do we benchmark the
various TinyML solutions to
enable “apples to apples”
system comparisons?
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250 Billion
MCUs today
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Himax HX6537-A 2MB flash Accelerometer, Mic,
WE-I Plus EVB 32-bit EM9D DSP 400 MFlz 2MB RAM Camera None
Mic, IMU, Temp,
Arduino 32-bit 1MB flash Humidity, Gesture,
Nano 33 BLE Sense nRF52840 il 256kB RAM Pressure, Proximity, BLE
Brightness, Color
n SparkFun 32-bit 1MB flash Accelerometer, Mic,
i Edge 2 ArtemisV1 Aol 384kB RAM Camera ELE
S Espressif 32-bit 4MB flash : -
% EYE ESP32-DOWD 240 MHz 520kB RAM Mic, Camera WiFi, BLE
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Challenges
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Challenges

|

Hardware

Heterogeneity

2

£

Resource Constraints

Missing Library
Features

Limited Operating
System Support
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TensorFlow Lite Micro

Hardware

Heterogeneity

Resource Constraints

Missing Library
Features

on Lo

oo o B

Limited Operating
System Support
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TensorFlow Lite Micro

Arduino

BLE Sense 33

Himax
WE-I Plus EVB

SparkFun
Edge 2

Espressif
EYE
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TFLite Micro Design

e TFLite Micro uses an
interpreter design

e Store the model as
data and loop through
its ops at runtime

instruction
ops

dispatch
loop

38



dispatch
loop

instruction
ops

Interpreter
(generally slower than compiled code)

int main() {
function_a(
function_b(

)
)

printf(”done!\n");
}

void function_a() {
doSomething();
saveTheWorld();
machineLearning++;

printf(”a is complete\n”);

}

void functon_b() {
x = 50;
y = 249;
z = 141;

int result = run_conv(x,y,z);
result += 61;

printf(”b is complete\n”);

C/C++
code

010101010100101010010101010101010
101101101011101010101010101101010
101010111010101001000111001011101
010010101111010111010101011110101
010101010101001010100101010101010
101011011010111010101010101011010
101010101110101010010001110010111
010100101011110101110101010111101
010101010101010010101001010101010

101010110110101110101010101010110
101010101011101010100100011100101
110101001010111101011101010101111
010101010101010100101010010101010

101010101101101011101010101010101
. 101010101010111010101001000111001
one time 011101010010101111010111010101011
110101010101010101001010100101010

compilation 101010101011011010111010101010101
compiled

machine
code

Compiler

(generally faster than interpreted code)

39



w (16x64x1x1)
B (16)

‘ ’ Many cycles

ML is Different

e Each layer like a Conv
or softmax can take
tens of thousands or
even millions of cycles
to complete execution
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data

Erm— ML is Different

w (64x3x3x3)
B (64)
|
MaxPool e Parsing overhead is
Conv relatively small for the
w (16x64x1x1) . -
B uf) TFMicro interpreter

when we consider the

m overall network graph

W (16x64x1x1) W (16x64x1x1)
B (16) B (16)
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Total Calculation | Interpreter
Cycles Cycles Overhead

Visual Wake -
Words (Ref) 18,990.8K 18,987.1K <0.1% o
(& TensorFIow
Google é;
Hotword 36.4K 34.9K 4.1% *I’I*I*
(Ref) ’

Sparkfun Edge 2
(Apollo 3 Cortex-M4)
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instruction
ops

dispatch
loop

Interpreter
Advantages

- Change the model
without recompiling
the code
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Interpreter
Advantages

- Change the model
without recompiling
the code

dispatch
loop - Same operator code
can be used across
multiple different

models in the system

instruction
ops



Interpreter
Advantages

- Same portable model
Arduino Himax
BLE Sense 33 WE-I Plus EVB serialization format

can be used across a

Espressif SparkFun
EYE Edge 2 lots of systems.
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TensorFlow Lite Micro

Core Model

< 20KBs

functionality

operators

conv2D
conv3D
tanh
Model Ioading depthwise conv2d
12 normalize
sigmoid
Memory max_pool

Error reporting olanner
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Memory
Improvements

e Selective op registration
reduces memory
consumption by 30%

e Memory reduction varies by
model, depending on the
operators used by the model

Kilobytes

300 +

200 +

100 +

B AllOps M Only Needed Ops

Flash
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TensorFlow Lite Micro
In a Nutshell

Built to fit on embedded systems:
- Very small binary footprint
- No dynamic memory allocation
- No dependencies on complex parts of the standard C/C++ libraries
- No operating system dependencies, can run on bare metal
- Designed to be portable across a wide variety of systems

arXiv:2010.08678v3 [cs.LG] 13 Mar 2021

TENSORFLOW LITE MICRO:
EMBEDDED MACHINE LEARNING ON TINYML SYSTEMS

Robert David! Jared Duke' Advait Jain' Vijay Janapa Reddi

Nat Jeffries' Jian Li' Nick Kreeger' Ian Nappier! Meghna Natraj'

Shlomi Regev' Rocky Rhode

les' Tiezhen Wang' Pete Warden '

ABSTRACT
TensorFlow Lite Micro (TFLM) is an open-source ML inference framework for running deep-learning models on
embedded systems. TFLM tackles the efficincy requirements imposed by cmbedded-system resource constraints

and the ion challenges that mak

nearly impossible. The framework

adopt  ique nerpetr-basd approach that provides fleibilty wile overcoming these nique chalenges.

In this paper, we explain the design decisions behin

d describe its implementation. We present an

evaluation of TFLM to demonstrate its low resource leq\nm'nents and minimal run-time performance overheads.

-

INTRODUCTION

‘Tiny machine learning (TinyML) is a burgeoning field at
the intersection of embedded systems and machine learning.
‘The world has over 250 billion microcontrollers (IC Insights,
2020), with strong growth projected over coming years. As
such, a new range of embedded applications are emerging
for neural networks. Because these models are extremely
small (few hundred KBs), running on microcontrollers or
DSP-based embedded subsystems, they can operate contin-
uously with minimal impact on device battery life.

‘The most well-known and widely deployed example of this
new TinyML technology is keyword spotting, also called
hotword or wakeword detection (Chen et al., 2014; Gru-
enstein et al., 2017; Zhang et al., 2017). Amazon, Apple,
Google, and others use tiny neural networks on billions of
devices to run always-on inferences for keyword detection—
and this is far from the only TinyML application. Low-
latency analysis and modeling of sensor signals from micro-
phones, low-power image sensors, accelerometers, gyros,
PPG optical sensors, and other devices enable consumer and
industrial applications, including predictive maintenance
(Goebel et al., 2020; Susto et al., 2014), acoustic-anomaly
detection (Koizumi et al., 2019), visual object detection
(Chowdhery et al., 2019), and human-activity recognition
(Chavarriaga et al, 2013; Zhang & Sawchuk, 2012).
Unlocking machine learning’s potential in embedded de-
'Google “Harvard University. orrespondence to:

Pete Warden <pmwdan@gongk com>, Vjay Janapa Reddi
<vj@cecs harvard.cdu>.

Proceedings of the 4" MLSys Conference, San Jose, CA, USA,
2021. Copyright 2021 by the author(s).

vices requires overcoming two crucial challenges. First
and foremost, embedded systems have no unified TinyML
framework. When engineers have deployed neural networks
to such systems, they have built one-off frameworks that
require manual optimization for each hardware platform.
Such custom frameworks have tended to be narrowly fo-
cused, lacking features to support multiple applications and
Incking portabilty acros  wide range of hardware, The
developer experience has therefore been ing
hand optimization of models to run on a specific Gevice
And altering these models to run on another device necessi-
tated manual porting and repeated optimization effort, An
important second-order effect of this situation is that the
slow pace and high cost of training and deploying mod-
els to embedded hardware prevents developers from easily
justifying the investment required to build new features.

Another limiting TinyML

have related but scparate needs. Without a generic TinyML

framework, evaluating hardware performance in a neutral,

vendor-agnostic manner has been difficult. Frameworks are
anditis hard

of improvements because they can come from hardware,

software, or the complete vertically integrated solution.

‘The lack of a proper framework has been a barrier to acceler-
ating TinyML adoption and application in products. Beyond
deploying a model to an embedded target, the framework
must also have a means of training a model on a higher-
compute platform. TinyML must exploit a broad ecosystem
of tools for ML, as well for orchestrating and debugging
‘models, which are beneficial for production devices.

Prior efforts have attempted to bridge this gap. We can distill
the major issues facing the frameworks into the following:

David, R., Duke, J., Jain, A., Janapa Reddi, V., Jeffries, N., Li, J., Kreeger, N.,

Nappier, I., Natraj, M., Wang, T. and Warden, P., 2021. Tensorflow lite micro:

Embedded machine learning for tinyml systems. Proceedings of Machine
Learning and Systems, 3, pp.800-811.
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Questions

How do we benchmark the
various TinyML solutions to
enable “apples to apples”
system comparisons?
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Challenges

Hardware

Heterogeneity

Serving

Resource Constraints

on Lo

Missing Library
Features

o L e Pl R

Limited Operating
System Support
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TinyML System Stack is Complicated

Machine learning system
stack is complicated sensers o S -

ML Applicaions PasonOclecion  KewondSpoting Anomaly Defctn
Many different models, ML Dtasets Visual Wake Words Goagle Speech ToyAOMOS
datasets, models, s MobieNet Moo R —
frameworks, formats, Tranng eortion oy Toreh
compilers, libraries, Crmmti Formets e o
operating systems, targets eence Tensorlow Lt o _——_ e
The cross-product makes orimestenes - - R .
it challenging to decipher operatng Sysiems eeo 08 s 2oty Vet
system performance Hardware Targets vou ose ey R
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Apples-to-apples comparison

ML

.
2y
iR |
‘\\

L SystemY

"\
b

What task?
What model?
What dataset?
What batch size?
What quantization?
What software
libraries?
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")

bench-mark

/'ben(t)SHmark/

See definitions in:

All Technology Surveying
noun
1. astandard or point of reference against which things may be compared or assessed.
"a benchmark case"
Similar:  standard I basis gauge criterion specification v
2. asurveyor's mark cut in a wall, pillar, or building and used as a reference point in measuring
altitudes.
verb
evaluate or check (something) by comparison with a standard.
"we are benchmarking our performance against external criteria”
Definitions from Oxford Languages Feedback
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Benchmarking

Use to

¢ Compare solutions .
P Provides

e Standardization of use cases
and workloads

* Inform selection
e Measure and track progress

e Raise the bar, advance the

* Comparability across
field

heterogeneous HW/SW systems
 Complex characterization of
system compromises
» Verifiable and Reproducible

* Methodology that is both fair results
and rigorous

Requires

e Community support and
consensus

56



Wide Array of ML Tasks

Audio

Image

Physiological /
Behavioral Metrics

Industry Telemetry

Audio Wake Words
Context Recognition
Control Words
Keyword Detection

Visual Wake Words
Object Detection
Gesture Recognition
Object Counting
Text Recognition

Segmentation
Anomaly Detection
Forecasting
Activity Detection

Sensing
Predictive Maintenance
Motor Control

DNN
CNN
RNN
LSTM

DNN
CNN
SVM
Decision Tree
KNN
Linear

DNN
Decision Tree
SVM
Linear

DNN
Decision Tree
SVM
Linear
Naive Bayes

Speech Commands
Audioset
ExtraSensory
Freesound
DCASE

Visual Wake Words
CIFAR10
MNIST
ImageNet
DVS128 Gesture

Physionet
HAR
DSA

Opportunity

UCI Air Quality
UCI Gas
UCI EMG

NASA's PCoE

S57



MLPerf
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Goals

4
MLPerf

v/

Enforce performance
result replicability to
ensure reliable results

4%

Accelerate progress in
ML via fair and useful
measurement

Use representative
workloads, reflecting
production use-cases

Akl

Serve both the
commercial and
research
communities

to improve the
state-of-the-art of ML

%

Keep benchmarking
affordable so that all
can participate
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MLPerf “Tiny” Tasks

Tiny Image
Classification

Keyword Spotting Visual Wake Words Anomaly Detection

&
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Warden, Pete. "Speech commands: A dataset for limited-vocabulary Chowdhery, Aakanksha, et al. "Visual wake words dataset.” Purohit, Harsh, etal. "MIMI| dataset: Sound dataset for Krizhevsky, Alex, and Geoffrey Hinton. "Learning multiple
speech recognition." arXiv preprint arXiv:1804.03209 (2018). arXiv preprint arXiv:1906.05721 (2019). malfunctioning industrial machine investigation and layers of features from tiny images." (2009): 7.

inspection." arXiv preprint arXiv:1909.09347 (2019).




Problem
definition

Dataset
selection (public
domain)

Model selection

Model training
code

Hbk

[>+-¢]

Derive “Tiny”
version:
Quantization

Benchmarking
harness
integration

Embedded
implementation

INT8

Training
Code

Deploy on
device

Example
benchmark run

Problem
Model

Size

Latency
Accuracy

Energy

AD

FC-AE

270 Kpar
10.4 ms/inf.
.86 AUC
516 pJ/inf.
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Metrics

Latency

Small fast dataset
Loop of inferences

No data-dependent
execution

Runtime requirements have been met.
Performance results for window 10:

# Inferences : 1000
Runtime : 10.524 sec.
Throughput : 95.020 inf./sec.

Runtime requirements have been met.

Host

!

USB Hub

DUT

Accuracy

Evaluate on larger dataset
Top-1accuracy & AUC
CLOSED: meet threshold

V.
OPEN: part of the metrics

Energy

No
“cherry-picking”

Power Monitor
setup

Median result

Host

l

LEVEL SHIFTER USB Hub

gl

Energy
Monitor

10 Manager

]

ONL
201
AaNo

GPIO/TRIG
DUT

1dv'

UART
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MLPerf Tiny

In a Nutshell

Built to benchmark embedded ML systems:

Standardize best practices in TinyML benchmarking

Measure both ML performance and power consumption

Designed to be portable across a wide variety of systems

Division | Dataset | Training | Model | Numerics Framework Hardware D rates

cow | X | x| x| irsprg | TmeEevie] gy Bl
Gosed | X | x| x| mwspro | PMERER | miscvmeu | ok farence.
Cosd | XXX bt | oramenon | R i S ot b
Clsed | X | X | xINESRTQ | e umning deep ncual networks
Open X QKeras s Int-6/8 QAT HLS4ML FPGA Rapid end-to-end development of machine

learning accelerators on reconfigurable fabrics.

arXiv:2106.07597v4 [cs.LG] 24 Aug 2021

MLPerf Tiny Benchmark

Colby Banbury* Vijay Janapa Reddi* Peter Torelli' Jeremy Holleman®| Nat Jeffries’
Csaba KiralyPietro Montino* David Kanter** Sebastian Ahmed'' Danilo Pau'!
Urmish Thakker' Antonio Torrini"! Peter Warden® Jay Cordaro ‘Giuseppe Di Guglielmo™™
Javier Duarte'" Stephen Gibellini' Videet Parekh” Honson Tran" Nhan Tran"!

Niu Wenxu""' Xu Xuesong*"!

Abstract

Advancements in ulir-low-pover finy mchine leaming (TinyML) systems
promise to unlock an entirely new class of smart applications. However, con-
tinued progress is limited by the lack of a widely accepted and easily reproducible
benchmark for these systems. To meet this need, we present MLPerf Tiny, the
first industry-standard benchmark suite for ultra-low-power tiny machine learning
systems. The benchmark suite is the collaborative effort of more than 50 orga-
nizations from industry and academia and reflects the needs of the community.
MLPerf Tiny measures the accuracy, latency, and energy of machine learning
evaluate the tradeoffs bet tems. Additionally, MLPerf
Tiny implements a modular design that enables benchmark subitters to show the
benefits of their product, regardless of where it falls on the ML deployment stack,
in a fair and reproducible manner. The suite features four benchmarks: keyword
spotting, visual wake words, image classification, and anomaly detection.

1 Introduction

Machine learning (ML) inference on the edge is an increasingly attractive prospect due to its potential
for increasing energy efficiency [4], privacy, responsiveness, and autonomy of edge devices. Thus
far, the field edge ML has predominantly focused on mobile inference, but in recent years, there
have been major strides towards expanding the scope of edge ML to ultra-low-power devices.
The field, known as “TinyML" [1], achieves ML inference under a milliWatt, and thereby breaks
the traditional power barrier preventing widely distributed machine intelligence. By performing
inference on-device, and near-sensor, TinyML enables greater responsiveness and privacy while
avoiding the energy cost associated with wircless communication, which at this scale is far higher
than that of compute [5]. Furthermore, the efficiency of TinyML enables a class of smart, battery-
powered, always-on applications that can revolutionize the real-time collection and processing of
data. Deploying advanced ML applications at this scale requires the co-optimization of cach layer of
the ML deployment stack to achieve the maximum efficiency. Due to this complex optimization, the
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Toward Emerging Multi-DNN Models

Pipelined Concurrent Concurrent &
DNNs DNNs Pipelined DNNs

Foveated
Rendering

e Back-to-back execution e Concurrent execution e Challenges from both
e Execution dependency e Execution deadline pipelined and concurrent
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MetaBench
iIn a Nutshell (Stay Tuned!)

e We demystify the unique features and challenges of
MMMT workloads for Metaverse applications

e We provide a taxonomy of MMMT workloads to
understand new classes of deep learning inference
workloads and discuss their feature and challenges

e Based on realistic applications, we propose a real-time
MMMT benchmark suite that models the different
Metaverse end-user usage scenarios.

e We also discuss the need for new scoring metrics
that reflect ML system performance in a useful manner.

MetaBench: Real-Time Multi-Model Benchmark for Metaverse

Hyoukjun Kwon® Krishnakumar Nair* Jinook Song"
Meta Meta Meta
Colby Banbury Mark Mazumder Peter Capak
Harvard University Harvard University Meta
Yu-Hsin Chen Liangzhen Lai Tushar Krishna
Meta Meta Georgia Institute of Technology
yhchen@fb.com d
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Questions

How do we drive hardware
and software
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The Hardware Lottery

Sara Hooker’s observation
that the success of new
ML approaches depends
on their compatibility with
downstream software and
hardware. Here you can
“make your own luck”!



Specialized Hardware Customization (on FPGAs)
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CFU Playground

. ML library
o TensorFlow Lite -- open source

Software

° CPUISA
o RISC-V -- open source
o VexRiscv -- open source 1
e  FPGASoC/IP 2
o LiteX -- open source ®
e FPGA synth/PnR o
o SymbiFlow,Yosys, -- open source
Nextpnr, VPR -- open source
FPGA vendor tools can be used if you wish _
g
) Python HW gen S
o Migen, nMigen  -- open source g
. Simulation I
) Renode, Verilator -- open source . Deploy . Profile . Optimize

The only proprietary component is the FPGA itself
Full-Stack Open-Source Framework 6
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CFU Playground

° ML library

o TensorFlow Lite -- open source
° CPUISA

o RISC-V
° CPU design

o VexRiscv
° FPGA SoC/IP

o LiteX -- open source
° FPGA synth/PnR

o SymbiFlow,Yosys, -- open source

Nextpnr, VPR -- open source

-- open source

-- open source

FPGA vendor tools can be used if you wish

° Python HW gen

o Migen, nMigen  -- open source
° Simulation

o Renode, Verilator -- open source

The only proprietary component is the FPGA itself
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CFU Playground

° ML library If’_(_)ﬁ_s_tc_)_rﬁ_‘
o TensorFlow Lite -- open source VexRiscv CPU | Function
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o RISC-V -- open source t
° CPU design
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° FPGA synth/PnR
o SymbiFlow,Yosys, -- open source
Nextpnr, VPR -- open source

FPGA vendor tools can be used if you wish
° Python HW gen
o Migen, nMigen  -- open source

° Simulation
o Renode, Verilator -- open source

The only proprietary component is the FPGA itself



CFU Playground

° ML library
o TensorFlow Lite -- open source
° CPUISA

o RISC-V -- open source
° CPU design

o VexRiscv -- open source
° FPGA SoC/IP

o LiteX -- open source

° FPGA synth/PnR
o SymbiFlow,Yosys, -- open source
Nextpnr, VPR -- open source

FPGA vendor tools can be used if you wish
° Python HW gen
o Migen, nMigen  -- open source

° Simulation
o Renode, Verilator -- open source

The only proprietary component is the FPGA itself
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Software
Gateware

Hardware

Deploy Profile Optimize

" | Custom
TFLM L ling \ TELM OPs
RISC-V Cycle Custom
Compiler Counters Instructions
: Resource Custom CFU /

Repeat

Agile Design Methodology
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Image Classification on Arty
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55x speedup in 5 weeks (part-time)
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Keyword Spotting on FOMU

@ Speedup

[ Block Mem % M Slice LUTs %

B DSP %

(sjeos Boy) 1010e) dnpaadg

100
7
50
25

(%) uonezin aoInosay

75x speedup in under 4 weeks (intern)

75




Software

Gateware

Hardware

- Deploy

- Profile

. Optimize

- -

%

169
10{%c0 o
)
°
8] © ®@g ° o
L XY °
o © [ ] e
06 (X))
) [ ] L
o S o »
® _o
04 - o :
o
&°
°
02 é
18000 19000 20000 21000 22000 23000 24000

FPGA LOGIC CELLS

76



CFU Playground
iIn a Nutshell

e An out-of-the-box, full-stack framework that fully
integrates open-source tools across the entire stack to
facilitate rich community-driven ecosystem development

e An agile methodology for developers to progressively
and iteratively design bespoke accelerators for
resource-constrained, latency-bound tinyML applications

e Through cross-stack insights, we demonstrate novel
model-specific resource allocation trade-offs between
the CFU, CPU, and memory system that enable optimal
ML performance on resource-constrained FPGA platforms

arXiv:2201.01863v1 [cs.LG] 5 Jan 2022

CFU Playground: Full-Stack Open-Source Framework for
Tiny Machine Learning (tinyML) Acceleration on FPGAs

Shvetank Prakash* Tim Callahan' Joseph Bushagour® Colby Banbury*
Alan V. Green' Pete Warden' Tim Ansell Vijay Janapa Reddi*
* Google $ Purdue University * Harvard University

Abstract

We present CFU Playground, a full-stack open-source framework
that enables rapid and iterative design of machine learning (ML)
accelerators for embedded ML systems. Our toolchain tightly in-
tegrates open-source software, RTL generators, and FPGA tools
for synthesis, place, and route. This full-stack development frame-
work gi 0 explore
are customized and co- optinised for cmbedded ML The rapid,

pr ion feedback loop lets ML hardware and
software mdnpm achieve significant returns out of a relatively
small investment in customization. Using CFU Playground’s design
loop, we show substantial speedups (55%-75x) and design space
exploration between the CPU and accelerator.

1 Introduction

Running machine learning (L) on embedded edge devices, as
opposed to in the cloud, is gaining increased attention for mul-
tiple reasons such as privacy, latency, security, and accessibility
[26). Given the need for energy efficiency when running ML on

Softwars

Gatoware

Hardwaro

1 Depioy Protie W Optmze

Figure 1: CFU Playground allows users to ang. and evalu-
ate model-specific ML enhancements to a “soft” CPU core.

accelerators for such systems could present the needed solutions.
However, the field of ML i still in is infancy and fast-changing.
Thus, it is desirable Lo avoid a massive non-recurring engincering
(NRE) cost upfront, especially for low-cost embedded ML systems.
Building ASICis both costly and time-consuming. Moreover, since
embedded systemsar often tskcsecil there is an apportunity
to avoid g tead explore task
and model-specific ML u(:l:ulwn ‘methods. This setting presents
the need for an agile design space exploration tool that allows us to
adapt to the changing landscape of ML and hardware accelerators.
In mu Ppaper, we present CFU Playg,raund ! a full-stack open-

k for iteratively
plonng the d:nyn apce of ny.mny.x a:::lemmn in an agile
1. The

fimction ralts 1cru;) [ux et M.anenlmm CPUs represst o
novel d

reduces the emh«d Ass«lalzd wnh ooy ucelenlon The

oftheir Ducto CFUs, e can
lop quickly and make changes il t

to 40 FPGA targting b ML taes s s it
dles together open-

source software (TensorFlow The Mm occ) open-source RTL
generation IP and toolkits (LiteX, VexRiscy, Migen, nMigen), and
open-source FPGA tools for synthesis, place, and route (yosys,
nextpnr, vpr, etc). By using open source for the entire stack, we give
the user access to customize and co-optimize hardware and soft-
result P

licensing restrictions and not tied to a particular FPGA, board, or
vendor. This rapid, lightweight framework lets the user achieve
large returns out of a relatively small investment in customized
hardware and is particularly useful for the long tail of low-volume
applications, which emerge in embedded ML use cases.

We use the framework to demonstrate how to design CFUs, ex-
tending an FPGA-based RISC-V core. The primary reason CFUs are
suitable for ML inference is that there are often a few small yet

itical hotspots. A of custom hardware that exploits

full-stack solution presented with
ation pocess not only works out-of the b, but lso accounts for
endto-end sputing
stack but ignored when dengmng lation. F

initial working, non-customized solution, the user can incremen-
tally specialize individual components to improve the performance

the bit-level flexibility of an FPGA can help accelerate large por-
tions of execution time. A tightly integrated CFU allows us to leave.
complexity, setup, and outer loops in the software while efficiently
tackling the core computational bottlenecks in the datapath. More-
over, as we demonstrate, CFUs allow us to incrementally grow the
unit unti it almost becomes a full-blown ML accelerator.

 Using our agile CFU design flow, we were abe 10 acclerate

lution operation of via a combination of
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A Greener Tomorrow with TinyML
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Total Impact
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Global CO, Emissions by Sectors
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ML Sensors
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Datasheets for ML Sensors

ML sensors must be transparent, indicating
in a publicly and freely accessible ML
sensor datasheet all the relevant
information such as fact sheets, model
cards, and dataset nutrition labels to
supplement the traditional EE hardware
information typically available for sensors.

Description: The PA1 Person Detection Module enables you to
quickly and easily add smarts to your loT deployment to
monitor and detect for humans. You can use this module
indoors and outdoors to understand where and when humans
arrive at your deployment site.

Features:

* Real-time Person Detection with On-Device ML

* Indoor and Outdoor use

* Finds a person at a maximum distance of 10 meters to a
minimum distance of 5 centimeters

Operates in low and high light environments (1-20000 Lux)
across a wide temperature range (0 to 50 °C)

* Features Color and Black-and-White Detection Modules
Use Cases:

* Smart business and home security systems

* Multi-modal key word spotting for virtual assistants

* Occupancy sensors and other infrastructure sensors

Sources: fabacademy.org, electroschematics.com, and nxp.com/docs
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Model performance:
Measured with Precision-Recall (PR)
and Area Under the PR Curve (PR-AUC).
Download raw performance results
i data here. Disaggregated performance
' measured with Recall, which captures
| how often the model misses faces with
| specific characteristics. Equal recall across
subgroups corresponds to the “Equality of

1 Opportunity” fairness criterion.
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Machine Learning Sensors

An ML sensor is a self-contained system that utilizes on-device
machine learning to extract useful information by observing some
complex set of phenomena in the physical world and reports it
through a simple interface to a wider system.

Machine learning sensors represent a paradigm shift for the future of embedded machine learning applications. Current
instantiations of embedded ML suffer from complex integration, lack of modularity, and privacy and security concerns from data
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Interface Standards Ethics
What universal interface is needed for ML What standards need to be in place for ML What ethical considerations are needed for
Sensors? Sensors? ML Sensors?

Call for Working Group Members

We are actively growing our working group. If you would like to be a part of it please email us at:
ml-sensors@googlegroups.com!

Example ML Sensor Datasheet

This illustrative example datasheet highlighting the various sections of an ML Sensor datasheet. On the top, we have the items
currently found in standard datasheets: the description, features, use cases, diagrams and form factor, hardware characteristics,
and communication specification and pinout. On the bottom, we have the new items that need to be included in an ML sensor
datasheet: the ML model characteristics, dataset nutrition label, environmental impact analysis, and end-to-end performance
analysis. While we compressed this datasheet into a one-page illustrative example by combining features and data from a mixture
of sources, on a real datasheet, we assume each of these sections would be longer and include additional explanatory text to
increase the transparency of the device to end-users. Interested users can find the most up-to-date version of the datasheet
online at https://github.com/harvard-edge/ML-Sensors.

Description: The PA1 Person Detection Module enables youto | | 200(2),95,5(:
quickly and easily add smarts to your loT deployment to 1
monitor and detect for humans. You can use this module -
indoors and outdoors to understand where and when humans 1
arrive at your deployment site. 1

1

1

Features:
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Machine Learning
Sensors

1. We need to raise the level of abstraction to enable ease of use for scalable
deployment of ML sensors; not everyone should be required to be an systems
developer or an engineer to use or leverage ML sensors into their ecosystem.

The ML sensor’s and defined by its
input-output behavior instead of exposing the underlying hardware and
software mechanisms that support ML model execution.

An ML sensor’s implementation must be clean and complexity-free.
Features such as reusability, software updates, and networking must be
thought through to ensure data privacy and secure execution.

ML sensors must be transparent, indicating in a publicly and freely
accessible ML sensor datasheet all the relevant information such as fact
sheets, model cards, and dataset nutrition labels to supplement the traditional
information available for hardware sensors.

We as a community should aim to foster an open ML sensors ecosystem by
maximizing data, model, and hardware transparency where possible,
without necessarily relinquishing any claim to intellectual property.

arXiv:2206.03266v1 [cs.LG] 7 Jun 2022

MACHINE LEARNING SENSORS

Pete Warden' Matthew Stewart” Brian Plancher? Colby Banbury® Shvetank Prakash? Emma Chen?
Zain Asgar' Sachin Katti' Vijay Janapa Reddi*

!Stanford University “Harvard University

ABSTRACT
Machine learning sensors represent a paradigm shift for the future of embedded machine learning applications.
Current instantiations of embedded machine learning (ML) suffer from complex integration, lack of modularity,
and privacy and security concerns from data movement. This article proposes a more data-centric paradigm for
embedding sensor intelligence on edge devices to combat these challenges. Our vision for “sensor 2.0” entails
segregating sensor input data and ML processing from the wider system at the hardware level and providing a

thin interface that mimics traditional sensors in This leads to a modular and casy-to-use
ML sensor device. We discuss challenges presented by the standard approach of building ML processing into the
software stack of the ing mi onan system and how the modularity of ML sensors

alleviates these problems. ML sensors increase privacy and accuracy while making it casier for system builders to
integrate ML into their products as a simple component. We provide examples of prospective ML sensors and an

datasheet as a ion and hope that this will build a dialogue to progress us towards sensor 2.0.

1 INTRODUCTION

Since the advent of AlexNet [43], deep neural networks have
proven to be robust solutions to many challenges that involve
making sense of data from the physical world. Machine
learning (ML) models can now run on low-cost, low-power
hardware capable of deployment as part of an embedded
device. Processing data close to the sensor on an embedded
device allows for an expansive new variety of always-on
ML use-cases that preserve bandwidth, latency, and energy
while improving i and maintaining data pri-
vacy. This emerging field, commonly referred to as embed-
ded ML or tiny machine learning (TinyML) [73, 18, 39, 59],
is paving the way for a prosperous new array of use-cases,
from personalized health initiatives to improving manufac-
turing ivity and everything in-by

However, the current practice for combining inference and
sensing is cumbersome and raises the barrier of entry to
embedded ML. At present, the general design practice is to
design or leverage a board with decoupled sensors and com-
pute (in the form of a microcontroller or DSP), and for the
developer to figure out how to run ML on these embedded
platforms. The developer is expected to train and optimize
ML models and fit them within the resource constraints of
the embedded device. Once an acceptable prototype imple-
mentation is developed, the model is integrated with the rest
of the software on the device. Finally, the widget is tethered
to the device under test to run inference. The current ap-
proach is slow, manual, energy-inefficient, and error-prone.

s ¥
joeFefe O
Tl-l-l-lT
Physica Processor Cloud

Sensor

Figure 1. The Sensor 1.0 paradigm tightly couples the ML model
with the application processor and logic, making it difficult to
provide hard guarantees about the ML sensor's ultimate behavior.

Machine Leaming
(ML) Sensor

Processor Cloud

Figure 2. Our proposed Sensor 2.0 paradigm. The ML model is
tightly coupled with the physical sensor, separate from the applica-
tion processor, and comes with an ML sensor datasheet that makes
its behavior transparent to the system integrators and developers.

It requires a sophisticated understanding of ML and the in-
tricacies of ML model implementations to optimize and fit
a model within the constraints of the embedded device.
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Conclusion

1. TinyML has the potential to
dramatically change our future

2. No free lunch — hardware and
software fragmentation is a
serious challenge to address

3. TinyML sustainability is crucial to
ensure its broad applicability

4. ML sensors based on TinyML
technology must be transparent

5. Widening access to applied ML is a
must to ensure equitable access

TinyML

Embedded
Systems

Machine
Learning

&

Applications

The future of ML is tiny and bright,
and its benefits can translate to societal impact. o,



Conclusion

_O’_ The Future of ML is
> Tiny and Bright




