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What is Tiny Machine Learning (TinyML)?

TinyML
Fast-growing field of ML

Algorithms, hardware, software

Low power consumption

On-device sensor analytics

Always-on ML

Battery-operated
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Mobile

Google Assistant



Google Assistant

nest
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Google Assistant

nest
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IoT 1.0: Internet of Things



nest
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IoT 2.0: Intelligence on Things

Google Assistant



nest
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Bandwidth
Reliability
Latency
Privacy
Energy

IoT 2.0: Intelligence on Things



Example: Smart shoes
● Kicking
● Penalty kicking
● Passing
● Dribbling
● ...

Emerging TinyML 
Use Cases
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Example: Augmented Reality
● Eye tracking
● Hand tracking
● Computer vision
● Superresolution
● ...

Emerging TinyML 
Use Cases
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Tiny Robot Learning

Duisterhof, B.P., Krishnan, S., Cruz, J.J., Banbury, C.R., Fu, W., Faust, A., de Croon, G.C. 
and Reddi, V.J., 2021, May. Tiny robot learning (tinyrl) for source seeking on a nano 
quadcopter. In 2021 IEEE International Conference on Robotics and Automation (ICRA) (pp. 
7242-7248). IEEE.

Duisterhof, B.P., Li, S., Burgués, J., Reddi, V.J. and de Croon, G.C., 2021, September. Sniffy 
bug: A fully autonomous swarm of gas-seeking nano quadcopters in cluttered 
environments. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems 
(IROS) (pp. 9099-9106). IEEE.

http://www.youtube.com/watch?v=wmVKbX7MOnU
http://www.youtube.com/watch?v=hj_SBSpK5qg
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Motion Sensors
Gyroscope, radar, 

magnetometer, accelerator 

Environmental Sensors
Temperature, Humidity, 

Pressure, IR, etc.

Touchscreen Sensors
Capacitive, IR

Image Sensors
Thermal, Image

Biometric Sensors
Fingerprint, Heart rate, etc.

Rich Array of Sensors

Rotation Sensors
Encoders

Force Sensors
Pressure, Strain

Acoustic Sensors
Ultrasonic, Microphones, 
Geophones, Vibrometers

...



5 Quintillion
bytes of data produced 

every day by IoT

Source: Harvard Business Review, What’s Your Data Strategy?, April 18, 2017
Cisco, Internet of Things (IoT) Data Continues to Explode Exponentially. Who Is 
Using That Data and How?, Feb 5, 2018

<1%
of unstructured data is 
analyzed or used at all

No Good Data Left Behind

21

https://hbr.org/webinar/2017/04/whats-your-data-strategy
https://blogs.cisco.com/datacenter/internet-of-things-iot-data-continues-to-explode-exponentially-who-is-using-that-data-and-how
https://blogs.cisco.com/datacenter/internet-of-things-iot-data-continues-to-explode-exponentially-who-is-using-that-data-and-how
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Questions

How do we design an 
open-source ecosystem to 
enable TinyML to thrive in 
the face of heterogeneity?

How do we drive hardware 
and software co-design in a 
flexible manner across the 
complete system stack?

How do we benchmark the 
various TinyML solutions to 
enable “apples to apples” 
system comparisons?

03 

01 02 
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250 Billion
MCUs today

25
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Board MCU / ASIC Clock Memory Sensors Radio

Himax
WE-I Plus EVB

HX6537-A
32-bit EM9D DSP 400 MHz 2MB flash

2MB RAM
Accelerometer, Mic, 

Camera None

Arduino
Nano 33 BLE Sense

32-bit
nRF52840 64 MHz 1MB flash

256kB RAM

Mic, IMU, Temp, 
Humidity, Gesture, 
Pressure, Proximity, 

Brightness, Color
BLE

SparkFun
Edge 2

32-bit
ArtemisV1 48 MHz 1MB flash

384kB RAM
Accelerometer, Mic, 

Camera BLE

Espressif
EYE

32-bit
ESP32-D0WD 240 MHz 4MB flash

520kB RAM Mic, Camera WiFi, BLE
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TF MicroChallenges
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TF Micro

SoftwareHardware

Challenges

CPU

GPU DSP

NPU Memory Power

Heterogeneity Resource Constraints

malloc ...

Missing Library 
Features

Limited Operating 
System Support
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TF Micro

SoftwareHardware

Micro

CPU

GPU DSP

NPU Memory Power

Heterogeneity Resource Constraints

malloc ...

Missing Library 
Features

Limited Operating 
System Support
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Micro

Himax
WE-I Plus EVB

SparkFun
Edge 2

Espressif
EYE

Arduino
BLE Sense 33

...

...
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● TFLite Micro uses an 
interpreter design

● Store the model as 
data and loop through 
its ops at runtime

TFLite Micro Design
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Interpreter
(generally slower than compiled code)

Compiler
(generally faster than interpreted code)
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● Each layer like a Conv 
or softmax can take 
tens of thousands or 
even millions of cycles 
to complete execution

ML is Different

Conv
W  (16⨉64⨉1⨉1)
B (16)

Many cycles

40



● Parsing overhead is 
relatively small for the 
TFMicro interpreter 
when we consider the 
overall network graph

ML is Different
data

Conv
W  (64⨉3⨉3⨉3)
B (64)

Relu

MaxPool

Conv
W  (16⨉64⨉1⨉1)
B (16)

Relu

Conv
W  (16⨉64⨉1⨉1)
B (16)

Conv
W  (16⨉64⨉1⨉1)
B (16)

Relu Relu

Concat
41



Model Total 
Cycles

Calculation 
Cycles

Interpreter 
Overhead

Visual Wake 
Words (Ref) 18,990.8K 18,987.1K < 0.1%

Google 
Hotword 

(Ref)
36.4K 34.9K 4.1%

Sparkfun Edge 2 
(Apollo 3 Cortex-M4)
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- Change the model 
without recompiling 
the code

Interpreter 
Advantages
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- Change the model 
without recompiling 
the code

- Same operator code 
can be used across 
multiple different 
models in the system

Interpreter 
Advantages
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- Same portable model 
serialization format 
can be used across a 
lots of systems.

Interpreter 
Advantages

Himax
WE-I Plus EVB

SparkFun
Edge 2

Espressif
EYE

Arduino
BLE Sense 33
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Micro

Core 
functionality

Model 
operators

Model loading

Memory 
plannerError reporting

...

conv2D

conv3D

tanh

depthwise_conv2d

l2_normalize

sigmoid

max_pool

...

< 20KBs
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● Selective op registration 
reduces memory 
consumption by 30%

● Memory reduction varies by 
model, depending on the 
operators used by the model

Memory 
Improvements
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Built to fit on embedded systems:
- Very small binary footprint
- No dynamic memory allocation
- No dependencies on complex parts of the standard C/C++ libraries
- No operating system dependencies, can run on bare metal
- Designed to be portable across a wide variety of systems

TensorFlow Lite Micro
 in a Nutshell

48

David, R., Duke, J., Jain, A., Janapa Reddi, V., Jeffries, N., Li, J., Kreeger, N., 
Nappier, I., Natraj, M., Wang, T. and Warden, P., 2021. Tensorflow lite micro: 
Embedded machine learning for tinyml systems. Proceedings of Machine 
Learning and Systems, 3, pp.800-811.



Questions

How do we design an 
open-source ecosystem to 
enable TinyML to thrive in 
the face of heterogeneity?
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Board MCU / ASIC Clock Memory Sensors Radio

Himax
WE-I Plus EVB

HX6537-A
32-bit EM9D DSP 400 MHz 2MB flash

2MB RAM
Accelerometer, Mic, 

Camera None

Arduino
Nano 33 BLE Sense

32-bit
nRF52840 64 MHz 1MB flash

256kB RAM

Mic, IMU, Temp, 
Humidity, Gesture, 
Pressure, Proximity, 

Brightness, Color
BLE

SparkFun
Edge 2

32-bit
ArtemisV1 48 MHz 1MB flash

384kB RAM
Accelerometer, Mic, 

Camera BLE

Espressif
EYE

32-bit
ESP32-D0WD 240 MHz 4MB flash

520kB RAM Mic, Camera WiFi, BLE
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TF Micro

SoftwareHardware

Serving
Challenges

CPU

GPU DSP

NPU Memory Power

Heterogeneity Resource Constraints

malloc ...

Missing Library 
Features

Limited Operating 
System Support
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● Machine learning system 
stack is complicated

● Many different models, 
datasets, models, 
frameworks, formats, 
compilers, libraries, 
operating systems, targets

● The cross-product makes 
it challenging to decipher 
system performance

TinyML System Stack is Complicated
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Apples-to-apples comparison

ML 
System X

ML
System Y

What task?
What model?

What dataset?
What batch size?

What quantization?
What software 

libraries?
…

54
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Benchmarking
Use to
• Compare solutions
• Inform selection
• Measure and track progress
• Raise the bar, advance the 

field

Requires
• Methodology that is both fair 

and rigorous
• Community support and 

consensus

Provides
• Standardization of use cases 

and workloads
• Comparability across 

heterogeneous HW/SW systems
• Complex characterization of 

system compromises 
• Veriůable and Reproducible 

results
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Wide Array of ML Tasks
Task Category Use Case Model Type Datasets

Audio

Audio Wake Words
Context Recognition

Control Words
Keyword Detection

DNN
CNN
RNN
LSTM

Speech Commands
Audioset

ExtraSensory
Freesound

DCASE

Image

Visual Wake Words
Object Detection

Gesture Recognition
Object Counting
Text Recognition

DNN
CNN
SVM

Decision Tree
KNN

Linear

Visual Wake Words
CIFAR10
MNIST

ImageNet
DVS128 Gesture

Physiological / 
Behavioral Metrics

Segmentation
Anomaly Detection

Forecasting
Activity Detection

DNN
Decision Tree

SVM
Linear

Physionet
HAR
DSA

Opportunity

Industry Telemetry
Sensing

Predictive Maintenance
Motor Control

DNN
Decision Tree

SVM
Linear

Naive Bayes

UCI Air Quality
UCI Gas
UCI EMG

NASA's PCoE
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Enforce performance 
result replicability to 
ensure reliable results

Use representative 
workloads, reflecting 
production use-cases

Encourage innovation 
to improve the 

state-of-the-art of ML

Accelerate progress in 
ML via fair and useful 

measurement

Serve both the 
commercial and 

research 
communities

Keep benchmarking 
affordable so that all 

can participate

Goals
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MLPerf “Tiny” Tasks
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Dataset 
selection (public 

domain)
Model selection Model training 

code
Derive “Tiny” 

version: 
Quantization

Embedded 
implementation

Benchmarking 
harness 

integration
Deploy on 

device
Example 

benchmark run
Problem 

definition

Anomalous Sound 
Detection System

Anomaly

Normal

FP32 INT8

Training 
Code

Problem AD

Model FC-AE

Size 270 Kpar

Latency 10.4 ms/inf.

Accuracy .86 AUC

Energy 516 μJ/inf.

ARM
mbed OS
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Metrics
AccuracyLatency Energy

Small fast dataset

Loop of inferences

No data-dependent 
execution

Evaluate on larger dataset

Top-1 accuracy & AUC

CLOSED: meet threshold
v.

OPEN: part of the metrics

No 
“cherry-picking”

Power Monitor 
setup

Median result
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Built to benchmark embedded ML systems:
- Standardize best practices in TinyML benchmarking
- Measure both ML performance and power consumption
- Designed to be portable across a wide variety of systems

MLPerf Tiny
in a Nutshell

63

Banbury, C., Reddi, V.J., Torelli, P., Holleman, J., Jeffries, N., Kiraly, C., 
Montino, P., Kanter, D., Ahmed, S., Pau, D. and Thakker, U., 2021. Mlperf tiny 
benchmark. NeurIPS’21



Toward Emerging Multi-DNN Models

Pipelined 
DNNs

Keyword 
Spotting

Speech 
Processing

● Back-to-back execution
● Execution dependency

Concurrent 
DNNs

Eye 
Tracking

Obstacle 
Detection

● Concurrent execution
● Execution deadline

Video 
Processing

Concurrent & 
Pipelined DNNs

● Challenges from both 
pipelined and concurrent

Obstacle 
Detection

Eye 
Tracking

Foveated 
Rendering

64



● We demystify the unique features and challenges of 
MMMT workloads for Metaverse applications

● We provide a taxonomy of MMMT workloads to 
understand new classes of deep learning inference 
workloads and discuss their feature and challenges

● Based on realistic applications, we propose a real-time 
MMMT benchmark suite that models the different 
Metaverse end-user usage scenarios.

● We also discuss the need for new scoring metrics 
that reflect ML system performance in a useful manner.

MetaBench
in a Nutshell (Stay Tuned!)

65

[MLSys’21]



Questions

How do we design an 
open-source ecosystem to 
enable TinyML to thrive in 
the face of heterogeneity?

How do we drive hardware 
and software co-design in a 
flexible manner across the 
complete system stack?

How do we benchmark the 
various TinyML solutions to 
enable “apples to apples” 
system comparisons?
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The Hardware Lottery

• Sara Hooker’s observation 
that the success of new 
ML approaches depends 
on their compatibility with 
downstream software and 
hardware. Here you can 
“make your own luck”!



MCUs:  KBs of RAM, Fixed/slow processor Specialized Hardware Customization (on FPGAs)

68



Full-Stack Open-Source Framework

RISC-V Compiler

Tensorflow Lite for 
MicrocontrollersCommon Libraries Model Profiling

Renode Emulation
MLPerf Tiny 
Benchmarks

Custom TFLM 
Kernels

F4PGA / Yosys+Nextpnr / Vivado / Radiant

Custom Function Unit
LiteX 
SoC

VexRISC-V 
CPU

So
ftw

ar
e

H
ar

dw
ar

e
G

at
ew

ar
e Custom InstructionsCycle Counters

Profile OptimizeDeploy

Resource Monitoring
LiteX Supported
FPGA board

69

● ML library 
○ TensorFlow Lite -- open source

● CPU ISA  
○ RISC-V -- open source

● CPU design
○ VexRiscv -- open source

● FPGA SoC/IP
○ LiteX -- open source

● FPGA synth/PnR 
○ SymbiFlow,Yosys, -- open source

Nextpnr, VPR -- open source

FPGA vendor tools can be used if you wish

● Python HW gen
○ Migen, nMigen -- open source

● Simulation
○ Renode, Verilator -- open source

The only proprietary component is the FPGA itself

CFU Playground
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Agile Design Methodology
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Image Classification on Arty

55x speedup in 5 weeks (part-time)
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Keyword Spotting on FOMU

75x speedup in under 4 weeks (intern)
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RISC-V Compiler

Tensorflow Lite for 
MicrocontrollersCommon Libraries Model Profiling

Renode Emulation
MLPerf Tiny 
Benchmarks

Custom TFLM 
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● An out-of-the-box, full-stack framework that fully 
integrates open-source tools across the entire stack to 
facilitate rich community-driven ecosystem development

● An agile methodology for developers to progressively 
and iteratively design bespoke accelerators for 
resource-constrained, latency-bound tinyML applications

● Through cross-stack insights, we demonstrate novel 
model-specific resource allocation trade-offs between 
the CFU, CPU, and memory system that enable optimal 
ML performance on resource-constrained FPGA platforms

CFU Playground
in a Nutshell
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A Greener Tomorrow with TinyML
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Tiny Footprint of 
a Microcontroller

81



Global CO2 Emissions by Sectors



TinyML System - Net Environmental Impact
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ML Sensors
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Sensor 1.0
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Sensor 1.0

Sensor 2.0
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Sensor 1.0

Sensor 2.0



ML sensors must be transparent, indicating 
in a publicly and freely accessible ML 
sensor datasheet all the relevant 
information such as fact sheets, model 
cards, and dataset nutrition labels to 
supplement the traditional EE hardware 
information typically available for sensors.

Datasheets for ML Sensors

88



89



90



Machine Learning 
Sensors

1. We need to raise the level of abstraction to enable ease of use for scalable 
deployment of ML sensors; not everyone should be required to be an systems 
developer or an engineer to use or leverage ML sensors into their ecosystem.

2. The ML sensor’s design should be inherently data-centric and defined by its 
input-output behavior instead of exposing the underlying hardware and 
software mechanisms that support ML model execution. 

3. An ML sensor’s implementation must be clean and complexity-free. 
Features such as reusability, software updates, and networking must be 
thought through to ensure data privacy and secure execution. 

4. ML sensors must be transparent, indicating in a publicly and freely 
accessible ML sensor datasheet all the relevant information such as fact 
sheets, model cards, and dataset nutrition labels to supplement the traditional 
information available for hardware sensors. 

5. We as a community should aim to foster an open ML sensors ecosystem by 
maximizing data, model, and hardware transparency where possible, 
without necessarily relinquishing any claim to intellectual property.
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TinyML

Machine
Learning

Embedded
Systems

Applications

The future of ML is tiny and bright,
and its benefits can translate to societal impact.

1. TinyML has the potential to 
dramatically change our future

2. No free lunch – hardware and 
software fragmentation is a 
serious challenge to address

3. TinyML sustainability is crucial to 
ensure its broad applicability

4. ML sensors based on TinyML 
technology must be transparent

5. Widening access to applied ML is a 
must to ensure equitable access

Conclusion
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The Future of ML is 
Tiny and Bright

Conclusion


